
Use of Web Application Frameworks in the

Development of Small Applications

Irena Petrijevcanin Vuksanovic, Bojan Sudarevic

National and University Library in Zagreb

Zagreb, Croatia

ivuksanovic@nsk.hr, bsudarevic@nsk.hr

Abstract - With the emergence of modern software

development methodologies and related web application

frameworks, many developers started using them because of

their advantages, such as faster development, enhanced

security, availability of useful and standardized libraries,

simpler organization of work in development teams and

clearer structure of code thanks to the strict conventions

and use of design patterns that encourage separation of

domain logic, user interface and data processing model.

However, because of perceived disadvantages of

frameworks - complexity and overhead of framework code,

learning curve, possible undetected security vulnerabilities,

etc. - most developers choose to use them only for

development of large and complex applications, while they

develop small applications from scratch. In this paper we

compare development process of two versions of the same

application – first developed in pure PHP, and second

developed using CodeIgniter web application framework.

Based on results of the comparison, we argue that, contrary

to the common practice, use of web application frameworks

is justified in development of small applications.

I. INTRODUCTION

Over the last two decades, many trends in the software
development have emerged, among which the most
prominent are:

 A growing number of applications, including
complex applications such as office suites, are
developed as web applications (“software as a
service” model).

 Users expect access to the applications in early
(alpha and beta) phases of development.

 Users expect new features to be added constantly
and often.

As a result of these trends, development cycles have
shortened, and the developers are under increasing
pressure, since they have to satisfy conflicting interests:
new version (with new features) should be released
frequently, but at the same time application must remain
stable and well structured. In some cases, the result is the
prolonged beta phase, since the developers can not
guarantee the stability of the application (example of this
is Gmail, Google's webmail service that was more than
five years in the beta phase).

As a solution for these problems, new software
development methodologies that enable more dynamic
organization of development process have emerged. On
the technical side, the implementation of these
methodologies is facilitated through modern web
application frameworks.

However, these new solutions are usually used in large
projects, while small applications are still often developed
in a mostly non-structured manner.

II. SOFTWARE DEVELOPMENT METHODOLOGIES

The most prominent among the modern software
development methodologies are Rapid application
development and Extreme programming.

A. Rapid application development

Rapid application development is a set of practices and
methods tailored toward [1]:

 Reduction of development schedules.

 Reduction of perceived development schedules by
making progress more visible.

 Reduction of schedule volatility, thus reducing the
chance of a runaway project.

Its main characteristic is minimal planning in favor of
rapid prototyping. The planning and prototyping phases
are interlaced with writing the software itself. This method
enables more dynamic development process and faster
achieving of basic software functionality, which is
expanded with new features through iterative repeating of
all phases.

B. Agile development and Extreme programming

Agile development is a collection of programming
methodologies that follow principles defined in the
Manifesto for Agile Software Development [2]:

 Individuals and interactions over processes and
tools.

 Working software over comprehensive
documentation.

 Customer collaboration over contract negotiation.

 Responding to change following a plan.

Extreme programming, the most popular agile
methodology, is geared toward eliminating requirements,
design, and testing phases as well as the formal documents
that go with them. Analysis, design, coding, testing, and
even deployment phases should occur with rapid
frequency [3].

Emphasis is also on independence of the team
members that, after initially meeting at beginning of each
phase, set their own individual goals and interact
informally and only when needed.

III. WEB APPLICATION FRAMEWORKS

Software framework is an abstraction layer that
provides software libraries that offer solutions for most
common programming problems, with the goal of
eliminating repetitive operations.

Web application frameworks are specifically geared
toward development of web applications and services.
They facilitate the use of the aforementioned software
development methodologies.

A. Evolution of web development

In the early 1990s, most web pages were static HTML
documents (with the exception of CGI applications that
were usually written in Perl). In the mid-1990s new
languages, such as ASP, ColdFusion and PHP, were
developed specifically for use in the web. Shortly after
that, first libraries aimed at solving common tasks specific
for the web development (e.g. generating HTML) were
created. Collections of these libraries can be considered as
early Web-application frameworks.

In 2004, Ruby on Rails framework was released. Ruby
on Rails is considered the most prominent web application
framework of the latest generation [4]. It is written in, and
works on top of, the Ruby language. Characteristics of
Rails are “don’t repeat yourself” principle, “convention
over configuration” concept and use of several
architectural patterns, such as Model-View-Controller and
Active Record. After Ruby on Rails, similar frameworks
written in other languages followed, such as Django
(Python), Catalyst (Perl), ASP.NET MVC (.NET

languages) and Zend (PHP).

B. “Don’t repeat yourself “ principle

 “Don’t repeat yourself” principle is stated as "every
piece of knowledge in a system should be expressed in
just one place [5]. It is aimed at reducing repetition in
software code, test plans, the build system, database
schemas and documentation. This principle is
implemented in frameworks through libraries aimed at
solving the most common tasks, such as data validation,
session and cookie management, file uploading, user
authorization and authentication, etc.

C. “Convention over configuration” concept

Frameworks that follow "convention over
configuration" concept are enforcing defaults in most
aspects of application, e.g. class, method, variable,
constant and database table names, file structure, coding
style, etc.

Compliance with established conventions simplifies
software development and code maintenance, especially
when working in teams, as all team members follow the
same rules. On the other hand, too strict enforcement of
conventions threatens the flexibility of applications.

D. Architectural patterns

Architectural patterns are general reusable solutions to
commonly occurring problems in software design. They
offer well-established solutions to architectural problems,
help to document the architectural design decisions and
facilitate communication between developers through a
common vocabulary [6].

Model-View-Controller pattern (Fig. 1) promotes
separation of domain logic (controller), user interface
(view) and data processing (model), as opposed to mixing
HTML, SQL queries and domain logic in the source code
(Fig. 2). In modern web application frameworks this
pattern is usually implemented through folder structure.
View files are responsible for showing data to the users of
application. No programming logic or database queries
can be run here, though data access may occur in these
files. They are structured as HTML files and usually use a
template language to present dynamic data, passed from
the controller. Model files are responsible for fetching,
modifying, inserting, and removing data from the
database. Controller files calls and fetches data from the

Figure 1. Model-View-Controller web application

Figure 2. Non-structured web application

models, loads the data and passes it to the views, and
sends the results to the user [7].

Second architectural pattern used in most modern web
application frameworks is Active Record, used for
accessing data in relational database. Table is wrapped
into a class and an object instance is tied to a row in the
table. Active Record class usually has methods that
implement SELECT, INSERT, DELETE and UPDATE
statements [9].

In most frameworks Active Record class supports all
major databases, which enable easy change of database
without modifications in queries, usually by changing one
setting in the configuration file.

E. Advantages and disadvantages of web application

frameworks

When starting a development of a web application,
developers and project managers make certain decisions
on the development process. One of those decisions is
whether to use web application frameworks or to develop
the application from scratch. Key advantages of web
application frameworks include [8]:

 A complete environment for Web site
development, interoperability, security, and
maintenance so that developers do not have to
build customized systems from the ground up
every time they launch a new site.

 Standards, consistency, and predictability.

 Software components or building-blocks so that
developers can share and reuse code.

 A model or standard architecture that allows easy
visualization of how the entire system works.

 Reusable and thoroughly tested code in the
libraries, classes and functions.

 Well-structured code using architectural patterns.

Key disadvantages of web application frameworks
include:

 Complexity and overhead of framework code, in
some situations visibly reduces application
performance and creates greater burden for the
underlying hardware.

 Security vulnerabilities in framework code affects
applications built using it.

 High learning curve.

 Strict conventions hinder the application
flexibility and developer’s creativity.

Advantages clearly outweigh disadvantages when
application that is being developed is large and complex
and developed by a team. On the other hand, if the
application is small and simple and developed by one
developer or a small team, common perception is that the
benefits that frameworks bring is not sufficient to justify
their use.

Although such reasoning takes into account both
advantages and disadvantages of frameworks, it obviously
gives greater importance to disadvantages, as if
advantages simply do not apply in the case of small
applications. It also fails to consider factors such as
maintenance and future development and possible growth
of the application and intangible factors such as personal
satisfaction of developers.

IV. EXAMPLE APPLICATION: ISVU2ALEPH

A. Aleph implementation project

Within the project of implementation of the new
library management software, National and University
Library in Zagreb and the libraries of 24 faculties of the
University of Zagreb and 14 institutes, have moved to the
Aleph Integrated Library System. Successful
implementation depended in large part on the transfer of
data and settings from the existing systems into the new
one. While bibliographic data from most of the libraries
was transferred relatively straightforwardly, the transfer of
administrative data (including patron records) represented
a greater challenge [10] since it is not standardized and
varied greatly between existing systems.

In the case of the faculty libraries of the University of
Zagreb, most of the patron (student) data was imported
into Aleph from the Higher Education Information System
(ISVU), network oriented modular system for data
processing and interaction within the higher education
system [11]. National and University Library has assumed
the role of coordinator of the Aleph implementation
process and, accordingly, the obligations related to,
among others, training of staff, monitoring of the system,
maintaining a support system for the users, analyzing data
loads, ensuring data security, collecting and tracking of
bibliographic data for conversion, as well as processing
and importing patron data from ISVU to Aleph.

List of all students enrolled in the current academic
year at the University of Zagreb is provided by ISVU to
National and University Library as a text file, in which
each line represents a record/student. Each record contains
13 delimiter-separated values, including student's name,
surname, postal address, e-mail address, name and code of
the faculty, the date when student status expires, and
several ID numbers. Conversion of ISVU data into the
format suitable for import into Aleph database, as well as
the first phase of the import itself, was done by the
application developed by National and University Library,
ISVU2Aleph.

B. ISVU2Aleph features

Following features are supported in ISVU2Aleph:

 User authorization of the National and University
Library staff member who perform data import.

 Loading the ISVU data into the application.

 Saving data into ISVU2Aleph database for later
processing.

 Conversion to UTF-8.

 Detecting and fixing potential errors (e.g. broken
lines).

 Editing data.

 Generating or manually adding and saving to
database data that is not present in ISVU (other
patron personal data, and data specific for the
libraries and Aleph) but is necessary for the
functioning of the library.

 Export of data from ISVU2Aleph database to
XML file.

 Uploading XML file to Aleph server, where it can
be imported into Aleph database through Aleph’s
Patron Loader Interface utility (PLIF).

C. Technologies used in development of ISVU2Aleph

ISVU2Aleph is a web application, written in the PHP
language.

It was decided to develop ISVU2Aleph as a web
application because of easy deployment – web browser
and Internet connection are the only requirements and
nothing has to be installed on the user’s computer. PHP –
scripting language originally designed to create dynamic
web content – has been chosen mainly because of its
flexibility and simplicity, although other advantages
exists, such as support for all major operating systems and
databases [12].

As a database, SQLite was used in the beginning, but
was later replaced with MySQL. ISVU2Aleph is installed
on the web server running Debian GNU/Linux operating
system and Apache HTTP Server.

Finally, in the development of version 2.0,
CodeIgniter, modern web application framework, written
in PHP, was used. CodeIgniter supports Model-View-
Controller architectural pattern, provides Active Record
database abstraction layer with support for all major
relational database systems, follows “Don’t repeat
yourself” principle by offering numerous useful classes
and helpers and promotes “Convention over
configuration” concept by offering (but not enforcing) set
of default configurations.

D. Development process

Development of ISVU2Aleph was done during the
summer of 2010. Two versions were developed in that
period.

In June 2010 functionality and workflow of the
application was defined by the manager of the Project
team for implementation of Aleph. Version 1.0 was
developed in June, in 19 hours of coding over three days,
and was written in pure PHP, without the use of a
framework, by a single developer. It used SQLite database
as a backend. It included all the aforementioned features,
with the exception of uploading XML file to Aleph server.
Coding style was purely procedural, with PHP code and
SQL queries embedded in the HTML code (the structure
is identical to the one shown in Fig. 2).

Successful test of importing data from ISVU to
ISVU2Aleph, and then exporting to XML file were
performed in July 2010. XML file was then manually
uploaded to Aleph server and imported into Aleph patron
database using PLIF without errors.

After the test, it was decided to further simplify the
procedure by enabling uploading of XML files through
ISVU2Aleph. It was also decided to make a switch to
MySQL database, because of its robustness and flexibility
in comparison with SQLite.

Version 2.0 was developed in August 2010 by the
same developer, in 11 hours of coding during one day. It
was written in PHP, using CodeIgniter framework and
purely object-oriented coding style. It was successfully
tested in late August, and subsequently used for first
production import in which data on 64842 students –
patrons of the faculty libraries of the University of Zagreb
– was imported into Aleph. Thanks to the consistent use of
framework’s capabilities and strict adherence to its
conventions, application’s architecture is identical to the
one shown in Fig. 1.

E. Comparison of the development processes

It should be noted that any attempt to compare
development processes of versions 1.0 and 2.0 is
influenced by the fact that functionality was mostly
known during development of version 2.0. While
comparison would be much more relevant if two versions
were developed in parallel, some – at least hypothetical –
comparisons can be made.

For instance, change of the underlying database from
SQLite to MySQL would be reduced to one minute
needed to modify four settings in the configuration file, if
the application has been developed using CodeIgniter
from the beginning, thanks to CodeIgniter’s Active
Record Class (not counting time spent on programming
the database, since that time is identical for both methods).
On the other hand, the same change in the version written
without using framework (performed later, solely for the
purposes of this paper) took two hours of developer’s
time.

Unit testing is also an area of development where web
application frameworks offer significant advantage.
Software unit testing, defined by the IEEE as a process
that includes the performance of test planning, the
acquisition of a test set, and the measurement of a test unit
against its requirements [13], is facilitated in CodeIgniter
by the Unit Testing Class. In the version programmed
without the use of CodeIgniter, unit testing was performed
manually (although it should be noted that it could have
been done by using specialized unit testing framework,
such as PHPUnit).

F. Code maintenance and future development

Probably the greatest advantages of the version
developed using CodeIgniter framework are in the area of
code maintenance and future development of the
application, as it has already been shown in the database
switch example.

Code maintenance is considered by most developers as
complex, technically difficult, “dirty” and tedious work
[14], especially if the code being maintained has been
written by another developer.

Use of CodeIgniter in development of ISVU2Aleph
reduces time spent on code maintenance and future
development in many ways:

 In the likely scenario in which the development
will once be continued by another developer, new
developer will spend significantly less time
studying existing code of the version written in
CodeIgniter than he would spend studying the
code of the version 1.0, thanks to the Model-
View-Controller architecture and other coding
conventions.

 Future improvements that should otherwise be
programmed manually (such as protection
measures against future hacking attack techniques
and yet unknown vulnerabilities) may be
implemented in existing CodeIgniter methods and
functions in future versions of the framework, and
may only require upgrade of the framework to a
newer version.

 Thanks to the numerous libraries and helpers
included in CodeIgniter, same functionality is
usually achieved with less code, so it is more
easily maintainable. The same is true for features
that will be added in the future.

V. CONCLUSION

Web application frameworks offer numerous technical
and organizational advantages (e.g. faster development
and cleaner application structure) over classical
development methods. Also, programming using web
frameworks is more comfortable for developers, since
they do not have to deal with many common
programming tasks.

Regardless of the above advantages, the development
of small applications is usually done without frameworks,
due to their perceived disadvantages.

However, we believe that the aforementioned
advantages are equally applicable in the development of
small applications, especially if the fact that the future
development of the application is usually not possible to
predict is taken into account.

REFERENCES

[1] S. McConnell, “Rapid development: Taming wild software
schedules”. Remond, Microsoft Press, 1996.

[2] Kent Beck et al., "Manifesto for agile software development",
2001. URL: http://www.agilemanifesto.org, accessed February 7th
2011.

[3] J. Shore and S. Warden, “The art of agile development”.
Sebastopol, O’Reilly Media, 2007.

[4] B. Askins and A. Green, “A Rails/Django comparison,” in 2006
Open Source Developers' Conference (December 2006).
Melbourne, 2006, URL:
http://osdcpapers.cgpublisher.com/product/pub.84/prod.29/m.1/fid
=174194/Askins%2CGreen-6934-RailsVsDjango.pdf (accessed
February 13th 2011).

[5] S. Ruby, D. Thomas and D. Heinemeier Hansson, "Agile web
development with Rails". Raleigh, The Pragmatic Programmers,

2008.

[6] P. Avgeriou and U. Zdun, "Architectural Patterns Revisited - A
Pattern Language," in Proceedings of 10th European Conference
on Pattern Languages of Programs (July 2005). Irsee, pp 1-39.

[7] J. Argudo Blanco and D. Upton, “CodeIgniter 1.7”. Birmingham,
Packt Publishing, 2009.

[8] T. J. Shelford and G. A. Remillard, “Real web project
management: Case studies and best practices from the trenches,”
Boston, Addison-Wesley Professional, 2002.

[9] M. Fowler, "Patterns of Enterprise Application Architecture”.
Reading, Addison-Wesley Professional, 2003.

[10] I. Petrijevcanin Vuksanovic and B. Sudarevic, “Migration process
and data modeling in National and University Library in creating
ILS,” in Proceedings of ELMAR-2010 (September 2010). Zadar,
2010, pp. 155–158.

[11] M. Baranović, M. Borčić, D. Hunjet, V. Kalafatić, D. Kranjčec, J.
Mesarić and B. Peh, “Informacijski sustav visokih učilišta”.
Zagreb, Ministarstvo znanosti i tehnologije Republike Hrvatske,
2003.

[12] R. Lerdorf, K. Tatroe and P. MacIntyre, “Programming PHP”.
Sebastopol, O’Reilly Media, 2006.

[13] “IEEE Standard for Software Unit Testing”, IEEE, 1986, URL:
http://www.cs.tut.fi/kurssit/OHJ-3500/dokumentit/IEEE-STD-
PDF/std1008-1987.pdf (accessed March 26th 2011).

[14] R. L. Glass, "Software Conflict 2.0: The Art and Science of
Software Engineering", Atlanta, developer.* Books, 2006.

